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ABSTRACT

Tracers without feedback on the atmosphere are used to probe tropospheric transport. Such passive tracers
are considered for two important anthropogenic sources, Europe and eastern North America. The linearity of
passive tracer continuity allows transport to be formulated in terms of a Green function, G. A coarse-grained
Green function is defined that is suitable for numerical investigation with a GCM. An ensemble of independent
realizations of the atmosphere is used to obtain the model’s ensemble mean, or ‘‘climate’’ Green function. With
increasing time, the individual realizations of G converge to their climate mean and this convergence is quantified
in terms of the decay of ensemble fluctuations. Throughout, G is analyzed with the goal of gaining new insight
into the tracer climate that results from constant sources.

The climate Green function is used to identify transport timescales, pathways, and mechanisms. The Green
function is zonally mixed after about 3 months. The time to mix G to within 10% of its asymptotic value exceeds
1 yr at high-latitude lower levels, while the interhemispheric two-box exchange time is ;7 months. Tracers
from Europe and eastern North America follow different pathways with distinct seasonality. Eddies play a key
role in transport. Transport in the Southern Hemisphere is dominated by transient eddies resulting from tracer
injected ;4 months earlier. These transient eddies extend throughout much of the troposphere, and align to a
large degree with contours of zonally averaged mixing ratio. Large seasonal changes of the mean-motion part
of the tracer flux are primarily compensated by the standing-eddy transport. Ensemble fluctuations of G decay
with an approximate t23 power law. Eddy conversion provides a source of fluctuations, while dissipation damps
ensemble fluctuations with a timescale of ;10 days. In the GCM context, the relative importance of parameterized
versus resolved vertical transport is examined.

1. Introduction

Trace gases, or simply ‘‘tracers,’’ are an important
part of the global climate system. Concentrations of inert
long-lived tracers such as SF6 and C2F6 are easily mea-
sured and provide valuable information on atmospheric
transport and mixing (e.g., Harnisch et al. 1996). De-
viations of CO2 from the well-mixed global mean may
to first order be considered as inert tracers whose dis-
tribution and seasonality gives important constraints on
the biosphere (e.g., Fung et al. 1983). Other tracers, such
as CH4, form an important part of the tropospheric
chemical budget and affect the radiation balance (Prath-
er 1996). In fact, through their interactions with the
biosphere, chemical cycles, and radiation, tracers may
ultimately play a key role in determining the habitability
of the planet (Prather 1996). An integral part of any

Corresponding author address: Dr. Mark Holzer, Canadian Centre
for Climate Modelling and Analysis, Atmospheric Environment Ser-
vice, University of Victoria, P.O. Box 1700, Victoria, BC V8W 2Y2,
Canada.
E-mail: Mark.Holzer@ec.gc.ca

study of atmospheric tracers is a model and some un-
derstanding of atmospheric transport. For known sourc-
es, transport determines the spatial and temporal struc-
ture of the concentrations, for known concentrations and
transport operator one has constraints on the sources
(e.g., Enting et al. 1995, and references therein), and
for known sources and a partial knowledge of the con-
centration, one can constrain the transport operator.
Tracer transport properties cannot be deduced solely
from the mean circulation, but depend on subtle aspects
of the flow, such as the eddy fields, Lagrangian statistics,
and, for a model, on the parameterized subgrid transport.
In this paper, we focus on the problem of known sources
of passive tracers, which get transported by the atmo-
sphere, but which do not couple to any meteorological
field and hence have no feedback on their transport op-
erator. We can, therefore, use passive tracers as a direct,
noninvasive probe of atmospheric transport.

The subject of turbulently advected passive tracers
has a venerable history in the physics of fluids (e.g.,
Corrsin 1951; Kraichnan 1966, 1974), but continues to
be of active experimental and theoretical interest (e.g.,
Gollub et al. 1991; Schraiman and Siggia 1994). In the
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context of the atmosphere, detailed studies of large-scale
chaotic or turbulent mixing have largely been confined
to two-dimensional models of transport in the strato-
sphere, where cross-isentropic transport is often ne-
glected to a first approximation (e.g., Pierrehumbert and
Yang 1993). In the very complex setting of the tropo-
sphere, the large-scale zonally averaged transport has
been studied in some detail in the context of a two-
dimensional (2D) model that parameterizes eddy trans-
port via a general flux-gradient relation, extracted from
a GCM (Plumb and Mahlman, 1987). This 2D model
was used to illustrate large-scale advective–diffusive
balances and quasi-universal characteristics of nearly
homogenized ‘‘chemical equilibrium’’ states for long-
lived tracers (Plumb and McConalogue 1988). Full
three-dimensional (3D) models are also commonly used,
but often transport is taken for granted once the model
has been ‘‘calibrated’’ against climatological data, or a
relatively sparse set of tracer observations such as those
for 222Rn and 85Kr (e.g., Jacob et al. 1987) or CFCs
(e.g., Prather et al. 1987). Recently, there has been some
effort to reduce uncertainty in tracer transport through
model intercomparison (e.g., Rayner and Law 1995; Ja-
cob et al. 1997; Denning et al. 1997).

In this paper, we focus on the climatic properties of
tropospheric passive tracer transport as represented by
a GCM. Typically, tracers of importance to climate are
in a statistically (cyclo-)stationary state with global-
scale sources of constant, slowly varying, or cyclic time
dependence. Such statistically stationary states make it
difficult, if not impossible, to deduce specific transport
pathways and mechanisms for tracer emitted at a given
location and time. Here, we will exploit the fact that
passive tracer transport is linear in the mixing ratio,
which allows one to think in terms of a Green function
from which the solution for a general source-sink field
may be synthesized. The Green function, G, is of course
nothing but the normalized time-evolving tracer distri-
bution resulting from the injection of tracer at a point
in space and time, and, in principle, for all such points
of interest. The Green function is, therefore, a functional
of the velocity field and hence a random variable itself.
Recently, a functional path integral representation of this
Green function for homogeneous isotropic turbulence
has been used to elucidate the subtle dependence of
turbulent tracer transport on the Lagrangian statistics of
the strain field (Schraiman and Siggia 1994). While such
powerful analytical techniques may eventually prove
useful for specific atmospheric problems, the compli-
cated tropospheric convection and diffusion processes,
and the general nonhomogeneous, nonisotropic nature
of the troposphere demand a more direct numerical ap-
proach.

Because of the strong functional dependence of G on
the flow, one must consider the ‘‘climate’’ of G (esti-
mated as the mean over several realizations of the flow)
and a statistical description of the fluctuations around
this mean state. The ensemble statistics of G can then

be used to synthesize the ensemble statistics of mixing
ratio from arbitrary sources. The numerical determi-
nation of G for all possible source locations is, of course,
prohibitive. To keep the problem to manageable size,
we confine ourselves to two source locations, Europe
and eastern North America, which are of interest be-
cause they are highly industrialized and emit a large
fraction of many anthropogenic tracers. While in the
absence of spatial homogeneity we thereby concern our-
selves with only the part of G that is relevant for these
source locations, we retain the generality of arbitrary
time dependence of the sources. To minimize Gibbs
oscillations in the spectral GCM used, and to keep the
size of the ensemble needed to study ensemble fluctu-
ations to an absolute minimum, we define a coarse-
grained G, which is essentially the point-source G con-
volved in time and space with functions of convenient
form. Such a coarse-grained G is defined for each month
of the year and each of the two locations considered,
and obtained for an ensemble of three separate simu-
lations. While this is a small ensemble, it is sufficient
for the study of globally, or time and zonally, averaged
ensemble variance, as our analysis below will show.

The ensemble of coarse-grained Gs is used to study
systematically the basic structure and seasonality of the
climate Green function in terms of transport timescales,
pathways, and mechanisms. This allows for new insight
into the statistically stationary state, which results from
constant sources, since such a state is the rapidly con-
vergent sum of appropriately time-lagged G’s. In the
GCM context, the relative importance of resolved versus
parameterized tracer transport is quantified. We then
consider the fundamental self-averaging of G, that is,
the way in which individual realizations of G converge
to their ensemble-mean climate as G is increasingly
mixed throughout the atmosphere. Ensemble fluctua-
tions are found to decay with a power law much as in
turbulent diffusion. To the best of the author’s knowl-
edge, this is the first study of this phenomenon in the
context of global-scale tropospheric transport.

2. The Green function for passive tracers

a. General properties of the Green function

A passive tracer has a continuity equation that is lin-
ear in the mass mixing ratio, x. Formally

]tx 1 T (x) 5 S, (1)

where ] t [ ]/]t and T is a linear transport operator
representing advection and diffusion. The source, S, is
considered to be interior to the atmosphere with x sat-
isfying zero-flux boundary conditions. The correspond-
ing Green function, G, is then defined by replacing the
general source, S, by a Dirac d function in space and
time:

(] t 1 T )G(r, t | r9, t9) 5 d(r 2 r9)d(t 2 t9). (2)

In Eq. (2), r denotes a general 3D coordinate. Through-



JUNE 1999 1661H O L Z E R

out, we adopt pressure, p, as the vertical coordinate, so
that r 5 (p/g, x), where x denotes a 2D horizontal
coordinate (g is the acceleration of gravity). Thus,
d(r 2 r9) 5 gd(p 2 p9)d(x 2 x9) 5 gd(p 2 p9)d(f 2
f9) d(l 2 l9)/[a2 cos(f )] in conventional latitude, f,
longitude, l, coordinates (a is the earth’s radius). The
corresponding 3D integration measure is a mass element
denoted by d3r 5 d2x dp/g 5 a2 cos(f ) df dl dp/g.
From (2) it follows that the solution to (1) is the linear
superposition

3x(r, t) 5 d r9G(r, t | r9, 0)x(r9, 0)E
t

31 dt9 d r9G(r, t | r9, t9)S(r9, t9). (3)E E
0

The first term represents the time-evolved initial con-
dition, x(r, 0), which we assume to be zero here. Al-
ternatively, we may consider t to be much longer than
the time necessary to homogenize the initial condition
to an uninteresting, structureless background. Note that
(2) implies the normalization ∫ G d3r 5 1, so that G has
dimensions of inverse mass.

In principle, the transport operator T represents only
advection and molecular diffusion. However, a GCM
has relatively coarse spatial resolution and the effect of
small-scale transport must be parameterized as convec-
tion and effective eddy diffusion. We write for T, ap-
propriate for GCM diagnostics,

T (x) 5 (v · = 1 v]p)x 2 DH(x) 2 DV(x), (4)

where in pressure coordinates the vertical ‘‘velocity’’ is
v [ dp/dt and (airmass) continuity takes the simple
form = · v 1 ]pv 5 0 (v is horizontal velocity; ]p [
]/]p). The operators DH and DV represent transport due
to unresolved, parameterized horizontal and vertical
processes (eddy diffusion and convection), respectively.
Because we assign all sources to S with zero-flux bound-
ary conditions, the vertical integral of DV vanishes.

While not an issue for the GCM used here, some
transport schemes are numerically nonlinear (see, e.g.,
Rasch 1994, and references therein). Such nonlinearities
must necessarily be weak enough so that, at least over
appropriate time and/or spatial averages, solutions from
different sources are to a good approximation additive
as in (3). If this is not the case, these artificial nonli-
nearities invalidate the transport model and not the
Green function approach.

It is useful to summarize some of the general physical
properties of G, which are relevant here. It is often
convenient to rewrite the time arguments of G in terms
of the delay, or lag, time, j [ t 2 t9. However, because
the atmosphere is not statistically stationary in time, nor
spatially homogeneous, we must retain separate j and
t9, as well as separate r and r9, arguments. Given an
ensemble of G’s with identical sources but different,
independent realizations of the atmosphere, the G’s will
exhibit strong fluctuations around their ensemble av-

erage, or climatological mean, {G}, at least for small
j. For long times after the initial injection, mixing ratio
becomes homogenized over the entire atmosphere so
that G has the limit G` [ 1/(∫ d3r); that is,

1
lim G(r, t | r9, t 2 j ) 5 5 G , (5)`24pa ^p &/gj→` s

where ps is the surface pressure, and ^ . . . & denotes the
global horizontal average. Thus, G` is a natural scale
for G.

We expect a gradual transition from the initial pulse
experiencing strong ensemble fluctuations to an inter-
mediate state that is ‘‘self-averaged,’’ that is, not totally
smeared out to G`, but with small ensemble fluctuations
and a nontrivial spatial and temporal structure. In other
words, as j increases, G → {G}, where G becomes a
good approximation to {G} well before {G} ; G`. As
part of the characterization of the fluctuations of G about
its climate, {G}, the self-averaging, G → {G}, will be
quantified in terms of the decay of ensemble fluctua-
tions.

In the climatological mean, the dependence on t9 be-
comes periodic with a period of 1 yr, assuming the at-
mosphere is itself in a statistically cyclostationary state,
where all ensemble means depend only on the time of
year or season. Therefore, we can write {G} as a Fourier
series in the source time, t9, with coefficients Gn as

{G(r, t9 1 j | r9, t9)}

5 {G (r, r9, j )} exp(iv t9), (6)O n n
n

where the only frequencies present are vn 5 2pn/T,
with T 5 1 yr and n 5 0, 61, 62, . . . .

b. Practical limitations and considerations for
numerical calculations

All GCM experiments were performed with the Ca-
nadian Climate Centre second generation GCM (CCC
GCMII; McFarlane et al. 1992), which is a spectral
model with triangular truncation at principle waven-
umber 32 and 10 hybrid sigma-pressure vertical levels
with an upper boundary at 10 mb. The tracer advection
was performed spectrally without any hole filling. While
this does not ensure positive definiteness of the mixing
ratio at all times, the very accurate spectral transport is
a bonus and the occasional Gibbs overshoot is not an
impediment for a purely passive tracer. Parameteriza-
tions of unresolved tracer transport parallel those used
for moisture.

Spectral methods are not designed to deal with the
equivalent of a d function on a grid whose large spatial
gradients lead to considerable Gibbs oscillations. We
deal with this difficulty by computing what is essentially
a smoothed Green function. Instead of expanding the
source, S, in d functions, we expand in functions that
have a smooth finite spatial extent. There is also a very
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FIG. 1. (a) The emission pattern for SF6 at the resolution of the
GCM. The SF6 sources are distributed according to electrical power
usage (Levin and Hesshaimer 1996). (b) The EUR and ENA source
patterns on the same linear grayscale as (a).

different kind of difficulty associated with localizing the
source in time, namely, that of large ensemble vari-
ability. If the source is only ‘‘turned on’’ for a single
time step (;20 min), the subsequent evolution of mixing
ratio will strongly depend on the meteorological con-
ditions at that time. This is avoided by turning on the
source pattern for an entire month so that there is sig-
nificant temporal averaging of the Green function,
which helps to reduce the size of the ensemble needed
to obtain meaningful climatological averages. The
choice of a 1-month square pulse is convenient for two
reasons. First, the state resulting from a constant source
is the simple sum of the smoothed Green functions for
each month and, second, the response to a 1-month pulse
is essentially just the average of the d-function-source
Green function over 1 month of source time, t9 (see
below).

The numerical determination of the full Green func-
tion, that is, the response to a point source at every
possible GCM grid point, would be a formidable task.
We simplify matters by considering only surface sources
with typical emission patterns such as that for SF6 (Fig.
1a), which are concentrated at just a few locations, pri-
marily in the Northern Hemisphere. Specializing to sur-
face sources, S in (1) takes the form

S(p, x, t) 5 gd(p 2 ps)F(x, t), (7)

where F is the (effective) surface mass flux of tracer.
We consider the d function of (7) to be just in the interior

of the atmosphere and in practice tracer is injected into
the lowest model level while zero-flux boundary con-
ditions are enforced at all times.

Formally, the smoothed, or ‘‘coarse-grained,’’ Green
function is then defined as follows. Symbolically, we re-
place the delta-function expansion F(x, t) 5 ∫ d2x9
dt9F(r9, t9)d(x 2 x9)d(t 2 t9) with

F(x, t) 5 s D (x 2 x )D(t 2 t ), (8)O l,m s l m
l,m

where Ds(x 2 xl) is a localized 2D spatial surface pattern
centered on position xl (but reasonably smooth over
several grid boxes), D(t 2 tm) is a 1-month square pulse
beginning at t 5 tm, and sl,m is the source strength of
the pulse. Both Ds(x) and D(t) are normalized to unity
[∫ d2x Ds(x) 5 1 and ∫ dt D(t) 5 1] and we may think
of them as broadened d functions. We denote the coarse-
grained Green function by Gl,m, where l labels the lo-
cation of the pattern center, and m labels the month
during which the pattern is ‘‘turned on.’’ Paralleling (2),
Gl,m is then defined by

(] t 1 T )Gl,m(r, t) 5 D3(r 2 r l)D(t 2 tm), (9)

with D3(r 2 rl) [ gd(p 2 ps)Ds(x 2 xl). The solution
for mixing ratio, x, with a source expanded as in (8),
and zero initial condition, then simply becomes the sum

x(r, t) 5 s G (r, t), (10)O l,m l,m
l,m

which is the coarse-grained analog of (3). Equations (9)
and (10), together with the form (4) for the transport
operator, are the key equations for this work. That Gl,m

is indeed a smoothed d-function-response Green func-
tion can easily be seen by expressing it in terms of G:

3G (r, t) 5 d r9 dt9G(r , t | r9, t9)D (r9 2 r )l,m E l m 3 l

3 D(t9 2 t ).m (11)

c. Experimental design and definition of ensemble

We study two source locations (Fig. 1b) based on the
maxima of the SF6 emission pattern, one centered on
Europe (EUR) and the other on eastern North America
(ENA). These two source regions account for roughly
half of the global SF6 emissions (EUR ; 30%, ENA
; 22%). The intention is not, however, to construct the
relevant part of the Green function for a particular prob-
lem, such as SF6, but to choose localized source loca-
tions of general interest that serve to illustrate tropo-
spheric transport and our methodology. Tracer emitted
from the EUR and ENA sources can be expected to
have quite different transport characteristics. Immedi-
ately after injection, prevailing westerlies transport EUR
tracer into ‘‘continental’’ conditions over Asia, while
ENA tracer experiences largely ‘‘oceanic’’ conditions
over the Atlantic. Both the ENA and EUR sources are
assigned the Gaussian shape F(x 2 x l ) }
exp[2(z/z0)2/2], where z is the geodesic distance be-
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FIG. 2. Experimental design as illustrated by the global integrals
of the 12 Green functions vs time. The shaded functions are the
corresponding source pulses.

tween x and xl, with the choice z0 5 2pa/70 5 572
km. (For this z0 the area enclosed by z 5 z0 includes
several grid points while still being ‘‘pointlike’’ with
;0.2% of the global area.) The EUR pattern is centered
at xl 5 (50.18N, 11.38E), and the ENA pattern at
(39.08N, 78.38W).

To resolve the seasonality of the dependence of G on
source time, t9, the GCM was integrated with 12 tracers,
Gl,1, Gl,2, . . . , Gl,12, for each source pattern (EUR, l 5
E, and ENA, l 5 A). Tracer Gl,1 has its source turned
on during January, Gl,2 during February, and so on. To
ensure that the Gl,m correspond to coarse-grained Green
functions of the previous section, they are normalized
such that (after the source ceases) ∫ Gl,m d3r 5 1. The
GCM integration is started on 1 December of nominal
year 1. The members of the ensemble of runs are defined
through their 1 December initial conditions taken from
successive years of a long multiyear run. After inte-
grating a given ensemble member through December of
year 1, the source for each Gl,m is turned on during month
m of year 2, as illustrated schematically in Fig. 2. The
GCM integration is continued with all 12 tracers for
several more months into year 3, until the Gl,m no longer
have any interesting spatial structure, that is, until the
Gl,m are close to G`. In addition, we also performed 5-
yr runs with constant sources to illustrate some of the
basic properties of the statistically stationary state. For
all GCM runs an annual cycle of climatological sea
surface temperatures was specified.

By ensemble, or climatological, average of some
quantity, X, we simply mean {X} [ Xn/N, whereNSn51

n labels realizations (runs). For later convenience, we
estimate the variance of ensemble fluctuations, X † [ X
2 {X}, as {X † 2}. [This maximum likelihood estimator
differs from the more usual unbiased estimator,

/(N 2 1), by a factor of (N 2 1)/N.]N †2S xn51 n

All diagnostic calculations were done with data saved
every 6 h. Most fields were sampled every 6 h, but
surface fields and subgrid terms were averaged over the
6-h period. This relatively high output rate was nec-
essary to avoid temporal aliasing of thermal tides and
the near-surface diurnal cycle. (Aliasing of tides at a
12-hourly sampling seriously contaminates the diver-
gence of the vertically integrated tracer flux in the Trop-
ics.) Because of the data volume generated with 12 trac-
es for each source pattern, we content ourselves here
with an ensemble of N 5 3 members, which is sufficient
for this study (see below).

Because we have adopted pressure coordinates for
our diagnostics, and much of the tracer is concentrated
at low levels, it is important that locations where pres-
sure surfaces are pierced by the topography are properly
handled. Therefore, all zonal and temporal averages are
computed only over physical locations where p # ps

(Boer 1982).

3. The statistically quasi-stationary state for
constant sources

Much of our analysis of the Green function is mo-
tivated by a desire to understand better the statistically
stationary state with constant sources. After a constant
source has been applied for a long time, the mixing ratio
consists of a linearly growing, spatially homogeneous
background x0(t), plus a statistically (cyclo)-stationary
part x1(r, t). To see that x1 reaches a statistically sta-
tionary state, consider its equation of motion. Using x
5 x0 1 x1 in (1), we have

]tx1 1 T (x1) 5 S 2 S, (12)

with S [ ] tx0. The mass-weighted global (horizontal
and vertical) integral of (12) gives

3d rS(r)E
S 5 5 g^F&/^p &. (13)s

3d rE
(It is assumed here that the global average of the surface
pressure, ^ps&, is strictly time independent, as is the case
for the GCM used.) Denoting the vertical integral of
some quantity X by X̃ [ X dp/g,ps∫0

S̃ 2 5 F 2 ps^F&/^ps&.S̃ (14)

Thus, ^S̃ 2 & 5 0, so that x1 has no net sinks or sources.S̃
This, combined with the fact that S 2 S has no temporal
trends, ensures that x1 attains a statistical stationary state.
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FIG. 3. Annual-mean, zonal averages of x1 for constant sources
(EUR or ENA). The contour interval is 0.2 in units of 10sG`.

FIG. 4. Six-hourly time series of the instantaneous two-box time,
t 2B, in years for constant EUR source (dashed line) and ENA source
(solid line). The two middle curves are the actual t 2B values. The
outer curves correspond to t 2B shifted to disentangle the two curves
for visual clarity.

The annual mean of the zonal average, [x1], is shown
in Fig. 3 for year 5 of the simulation with constant sources.
The qualitative structure of the mixing ratio in the Southern
Hemisphere (SH) depends only weakly on source location.
In the Northern Hemisphere (NH), the source location is
identified by a maximum in mixing ratio, and the annually
averaged EUR tracer tends to be ‘‘trapped’’ more closely
to the surface than the ENA tracer. The zonally averaged
structure of the mixing ratio will be discussed further when
we examine it for the Green function.

A commonly used basic characterization of the sta-
tistically stationary state is the simple two-box inter-
hemispheric exchange time, which is defined as follows
(e.g., Rayner and Law 1995; Bowman and Cohen 1997).
Each hemisphere represents a ‘‘box,’’ with tracer masses
MN and MS and sources S N and S S. The two-box ex-
change time, t , is defined assuming a simple ‘‘down-
gradient’’ flux proportional to DM 5 MN 2 MS, that is,
]tMN 5 2DM/t 1 S N, and similarly for the SH. Thus,
for constant sources with DS 5 S N 2 S S, this two-box
model exponentially approaches the steady state 2DM/
DS 5 t .

Paralleling the two-box model, we define an instan-
taneous interhemispheric exchange time as

t 2B [ 2DM/DS . (15)

Figure 4 shows the 6-hourly time series of t 2B for the
runs with either constant ENA or EUR source and iden-
tical realizations of the atmosphere. For these sources,
an approximately statistically quasi-stationary state,
with t 2B ; 0.6 yr, is reached after about 1 yr. This value
is within the range 0.50 # t 2B # 1.28, with median t 2B

5 0.78, produced by the 10 models of the TransCom2
intercomparison study (Denning et al. 1997). The small
downward trend in t 2B is likely due to the fact that the
model’s poorly represented stratosphere is still ‘‘equil-
ibrating’’ with the troposphere through slow exchange.
The seasonality of t 2B is seen to depend on source lo-
cation. For ENA, t 2B has a spring trough and a fall
peak, while t 2B for the EUR source has a trough during
spring and fall and peaks during summer and winter.

We will investigate further properties of the statisti-
cally stationary state together with the corresponding
properties of the Green function. This will give us fur-
ther insight into the seasonality of x1 and its dependence
on source location.

4. Generic and modeled time evolution of
G at a point

In addition to the global two-box time, it is useful to
have a local measure of transport times. To this end,
consider Fig. 5, which shows an idealized sketch of the
generic time dependence of the ensemble-averaged G
at a given field point r. In this section, we will focus
on the dependence on delay, j, and ignore the explicit
dependence on source time, t9. Equivalently, we may
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FIG. 5. (a) Sketch of the generic, smoothed, time dependence of
G at a point remote from the source point. Here G asymptotically
reaches its ultimate well-mixed value of G` from below. (b) Generic
time dependence at a point close to the source. Here G overshoots
its asymptotic value and relaxes to G` from above. The time t 0 is
the time when G first reaches gG`, while the time t`(e) is the time
such that for all later times |G 2 G`| , eG`. The time t* is the
integral time defined such that the area under the curve is equal to
that of the shaded region as j → ` (see appendix).

imagine dealing with an annual average over t9. (The
dependence on t9 can explicitly be dealt with, but would
unnecessarily encumber the discussion here.) If r is far
from the source point r9 (Fig. 5a), the mixing ratio at
r monotonically increases to its eventual asymptotic val-
ue, G`. For field points r close to the source (Fig. 5b),
one expects an overshoot as very high mixing ratios are
observed shortly after injection followed by a relaxation
to G` from above. Oscillations about G` for intermediate
times are in principle also possible as an air mass with
high mixing ratio recirculates to r before having been
significantly diluted, but we expect such behavior to be
associated with short time and length scales and, there-
fore, to be largely averaged out for the ensemble mean
of the coarse-grained G.

What is the evolution of G(j ) as a function of j at a
point in the GCMs atmosphere? Clearly we cannot plot
G(j ) versus j for every model grid point. Instead, we

parameterize the form of G(j ) in terms of a few con-
stants. First, does G(j ) overshoot its asymptotic value,
G`? As a direct measure of whether this occurs, we
define an overshoot measure, a. If Gmax is the peak value
of G(j ), then a 5 1 if Gmax . G`, and a 5 0 otherwise.
Correspondingly, we define tmax as the delay time for
which G reaches Gmax. It is natural to ask how long it
takes for G to first reach some specified value. We define
t 0(g) to be the time when G first reaches gG`. Thus,
with g 5 ½, t 0 has a natural interpretation as arrival
time. Finally, one can also ask how long it takes for
G(j ) to be within a specified range of G`, as a crude
measure of the time when G(j ) is ‘‘asymptotic.’’ Ac-
cordingly, we define t`(e) as the time when |G/G` 2
1| # e for all delays j $ t`. We thus have four ‘‘shape’’
parameters for the G(j ) versus j curve: the timescales
tmax, t 0, and t`, plus the overshoot measure a.

To determine the spatial structure of these parameters,
we compute them at each point in the atmosphere by
linearly interpolating 19 consecutive monthly means of
the ensemble-averaged G. To compute a meaningful
overshoot measure, a, we consider the following: after
19 months, G is homogenized to withing a few percent
throughout the troposphere but still exceeds G` by ;6%
because G has not yet been mixed throughout the strato-
sphere. In this sense, G strictly overshoots G` every-
where in the troposphere. However, we wish to compute
an a that indicates whether G overshoots its tropo-
spheric mixed state, and therefore in practice demand
that Gmax exceed G` by about 6% for a to be set to
unity. (The qualitative features of a do not depend
strongly on where this threshold is set.)

Figure 6 shows the zonal averages of these parameters
for GE,1. Even in the zonal average, the boundary be-
tween [a] 5 0 and [a] 5 1 is surprisingly sharp, and
consists of the tropopause in the NH and of a less ob-
vious boundary in the SH, which cannot be identified
as a transport barrier. The fields [tmax] and [a] contain
similar information. For much of the region, where G
does not overshoot its tropospheric mixed value, Gmax

is the latest value in the time series (i.e., tmax . 18
months), consistent with a monotonic approach to the
tropospheric mixed value from below. As one gets closer
to the source, tmax decreases continuously, since there
Gmax represents the advecting and diffusing initial tracer
pulse shortly after injection. The arrival time t 0(½)
shows that where G overshoots ([a] 5 1), it reaches
G`/2 in a time on the order of tmax/2, while, where [a]
5 0, t 1/2 contains structure not captured by tmax. Finally,
t` shows when G has asymptoted to within 10% of G`

(either from above or below). [At e 5 10%, t`(e) is
not sensitive as to whether we take the asymptotic value
of G to be G` or the tropospheric mixed value at 19
months.] The minimum values of t` lie along the bound-
ary of the overshoot region as expected from a contin-
uous transition from one behavior to the other. What
this means physically is less clear, though presumably
balanced fluxes are necessary so that a value of G` is
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FIG. 6. Zonal average of the overshoot measure, a, (contour interval of 0.2) and the three timescales (contour interval of 1.5 months) that
parameterize the time evolution of G at a point as described in the text (see also Fig. 5).

quickly established without further net loss or gain of
tracer mass. (All timescales are largest above the tro-
popause across which tracer leaks slowly with a time-
scale on the order of a decade for this model.)

One can also define an integral time, t*, such that
the area under the G(j ) versus j curve, for j # t, ap-
proaches (t 2 t*)G` for large t. For t* k 0, t* has a
natural interpretation as an arrival time much like t 0(½).
The virtue of t* is that the mixing ratio of the statis-
tically stationary state for constant sources can simply
be scaled to equal t* in the case of a point source, or
to a weighted average of t* for a distributed source.
These properties of t* are derived in the appendix.

While the timescales associated with the relaxation
of G to G` at a point in the atmosphere are a useful
characterization of transport, they do not carry explicit
information on transport pathways. Extracting transport
pathways directly from the statistically stationary state
is nearly impossible, but this kind of information is
exactly what is naturally contained in G and this will
be the subject of the following section.

5. Basic structure and seasonality of the
climatological Green function

We consider the ensemble and monthly averaged
Green functions Gl,m for the EUR and ENA sources.
(For clarity, we omit the { . . . } brackets for ensemble
average, so that an overbar indicates the combined
monthly and ensemble average.) As a basic character-
ization of the horizontal spatial structure of G and its
transport, we compute the vertical integral G̃ [ Gps∫0

dp/g (the ‘‘column burden’’ per mass injected), which
obeys from (9)

˜ ˜˜] G 1 = · (vG ) 5 D 1 D (x 2 x )D(t 2 t ). (16)t l,m l,m H s l m

After the source pulse has ceased [D(t 2 tm) 5 0], the
right-hand side (rhs) of (16) is just H, which is smallD̃
compared with the remaining terms. It is useful to split
the vertically integrated flux [ G into its rotationalṽG
and divergent parts as G 5 GD 1 GR 5 =P 1 k 3
=C, with potential and streamfunctions P and C. Be-
cause = · G 5 = · GD 5 ¹2P, only the divergent part,
GD, contributes to (16). Figures 7a,b show the ensemble
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and monthly averages of G̃1 and G̃7, together with their
associated GD, for the source month (January and July)
and for the subsequent 2 months. Note that GD is a
purely diagnostic quantity and after ;1 month GD is at
least an order of magnitude smaller than G R (as j →
`, G D → ;0, and G R → ;G`ṽ). Also, because = · GD

5 ¹2P, GD has global-scale structure even for highly
localized flux divergence. For example, the structure
seen in the SH at a lag of 1 month in Fig. 7 does not
imply a significant net flux in the SH; virtually the same
GD is obtained if G is zeroed in the SH. The utility of
GD lies in the fact that it gives a useful indication of
the average spreading of tracer, and that it is the only
part of G that enters (16).

For both source locations and all source times, tracer
is mixed and transported rapidly in the zonal direction for
the first 2–3 months. During this time G̃ has pronounced
geographic dependence, and G D has a strong zonal com-
ponent. After about 3 months, G̃ has lost most of its
zonal structure and G D is primarily meridional. The
evolution of G̃ depends on season (i.e., source time, t9)
and on source location. In the EUR case during winter,
GE,1 spreads primarily from west to east at early times
(order 1 month) and first finds its way to the equator
by ‘‘swirling’’ (with anticyclonic curvature) around the
Tibetan Plateau. In contrast to this wintertime behavior,
the EUR summer pulse, GE,7, shows slower zonal mixing
and tracer first reaches the Tropics over Africa and the
tropical Atlantic. Summer burdens over the Himalayas
are somewhat higher than in winter, indicating that the
transport occurs at higher levels during summer. In the
ENA case, there is less seasonal dependence on source
time for the early transport. In spite of marked differ-
ences between the burdens for the two sources during
the first 2 months, their similarity is striking after only
3 months, when the zonal structure has been largely
homogenized.

The meridional spreading of the ‘‘burden,’’ G̃, is
shown in Fig. 8 as a space–time plot of the zonal average
[G̃], sampled every 6 h. The burden is plotted as
[G̃]/^G̃`&, so that the large-lag limit of [G̃`] shows as
[ps]/^ps& ù 1. The figure shows the vertically integrated
version of the generic behavior sketched for G(j ) in
Fig. 5: in the NH, [G̃] overshoots its asymptotic value
of [G̃`] by a factor of ;4, while in the SH [G̃`] is
gradually approached from below. After ;90 days, there
is little difference between the EUR and ENA cases.
The high wintertime burdens for the EUR source are in
part geometric in origin: a unit mass residing at high
latitudes will result in higher zonal-average burdens than
the same mass at lower latitudes (and since the mixing
is primarily zonal, this also means higher local mixing
ratios at high latitudes). Tracer from the EUR source is
efficiently transported northward in winter resulting in
high burdens. Less mass reaches high latitudes from the
ENA source.

A crucial aspect of tracer transport is the vertical
structure of G. Figures 9a,b show [G], the zonal and

monthly/ensemble average of G together with its zonally
averaged flux, F [ ], [vG]), due to the model’s([yG
resolved advection. [The vertical component of F is
scaled by the negative aspect ratio of the figure (v .
0 is downward). Applying this scaling, for example, to
([y ], [v ]), gives vectors properly tangent to the mass
streamfunction.] Not all of F contributes to the local
rate of change of G since much of the flux is rotational
in the f 2 p plane. In particular, as G → G`, F →
([y ], [v ]) G`, so that F becomes purely rotational.
Nevertheless, at early times F does give a useful indi-
cation of the advective transport. The model’s param-
eterized vertical flux (2 DV dp9), discussed separatelyp∫0

below, is also important during the source month, but
adding it to F does not alter the qualitative character of
Fig. 9.

The general structure of [G] and its evolution are in
broad qualitative agreement with the picture of the zon-
ally averaged transport given by Plumb and Mahlman
(1987). The large low-level horizontal gradients in the
Tropics result from the strain of the convergence of the
Hadley circulation. This convergence can be seen to
extrude tracer at low levels and to inject it into the upper
troposphere where it enters the SH in the outflow region
of the Hadley circulation. After ;3 months, [G] is es-
tablished in the SH with larger mixing ratios at high
levels than at low levels, giving the hemispheres op-
posite vertical mixing ratio gradients in the zonal av-
erage. After ;4 months, [G] has reached a tropospheric
‘‘slope equilibrium’’ in the sense that contours of [G]
continue to have approximately the same shape (i.e., the
same local slopes), while the gradients of [ ] continueG
to get washed out as G → G` (see also Fig. 15). This
‘‘equilibrium’’ state can be ascribed to an approximate
local balance between the zonal-mean advection and
effective eddy diffusion (Plumb and Ko 1992, and ref-
erences therein).

To augment [G] with information on the vertical
structure as a function of longitude, Fig. 10 shows equa-
torial east–west sections of for the month followingG
the source month. While the vertical structure of a an
east–west section is sensitive to its location with respect
to the intertropical convergence zone, the longitudinal
structure is not. In winter, for both source cases, the
equatorial cross sections show tracer entering the SH at
longitudes remote from the source and at low levels.
(Subsequently, at ;108S, tracer does get injected into
upper troposphere by the Hadley convergence as shown
in Fig. 9.) In summer, tracer is mixed more rapidly in
the vertical throughout the NH and crosses into the SH
closer to the longitude of the source than in winter.

From the fields presented, from animations, and nu-
merous visualizations of the 3D evolving Gl,m, we have
the following general picture. EUR tracer shows be-
havior we might expect for continental conditions. In
winter, tracer is advected over the Asian continent where
there is subsidence resulting in high mixing ratios close
to the surface for about 2 months. In summer, the heating



1668 VOLUME 12J O U R N A L O F C L I M A T E

FIG. 7. (a) EUR source for Jan (G1) and Jul (G7) releases. The contoured and shaded field is the monthly and ensemble average of the
vertically integrated Green function, G̃ in units of ^G̃`&, and the vector field is the corresponding monthly mean divergent flux in units

over land is associated with upward motion and con-
vection. The evolution of ENA tracer is consistent with
oceanic conditions. Tracer is advected over the Atlantic
and experiences vertical transport even in winter with

less of a seasonal contrast. The low-level, wintertime
swirling of EUR tracer around the Tibetean Plateau,
already noted, also applies to a lesser degree to the ENA
case where high mixing ratios also appear off East Af-
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FIG. 7. (Continued ) of ^G̃`& m s21. Note that during the source months the scale of the vector field is an order of magnitude larger than
for the other months. (b) Same as (a) for the ENA source.

rica (Figs. 7 and 10). For both source cases, there is in
addition some low-level wintertime transport across the
tropical Atlantic associated with the trade winds. This
can be seen in Fig. 10 by the high mixing ratios off the

east coast of South America for EUR and to a lesser
degree for ENA. Summertime transport is more active
throughout the troposphere. The dominant summer
transport pathway for EUR is over western Africa and
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FIG. 8. The zonal average of the 6-hourly sampled, vertically integrated ensemble-mean Green
function as a function of time. The contour interval is 0.25 in units of ^G̃`&.

westward over the Atlantic at midlevels. Summertime
transport of ENA tracer is dominated by northeast trans-
port to Europe via the westerlies and southwest transport
across Mexico and over the tropical Pacific.

We have seen an indication of the seasonality of G
with respect to source time, t9, from the contrast between
January and July pulses. The seasonality of G has also
been studied systematically by examining the seasonal
cycle of G(j, t9) with respect to t9, at fixed lag j, in
accord with (6). For example, for a fixed lag of 1 month
we examined the annual cycle of the 12 monthly means
corresponding to the February average of the January
pulse, the March average of the February pulse, and so
on, for the ensemble-averaged 12 Gl,m. [We define the
annual cycle here simply as the gravest mode (n 5 61)
of the Fourier expansion (6).] For the fields G̃, [G], and
the east–west sections of G, this analysis shows that the
character of the seasonal dependence on t9 is well cap-
tured by the contrast between the January and July puls-
es presented. With increasing lag, the seasonal cycle
amplitude, as well as the differences between the EUR
and ENA cases, decrease.

From a modeling perspective it is of considerable
interest to establish the relative importance of resolved
versus parameterized vertical transport. For this purpose
we write the monthly (and ensemble) averaged equation
of G as

] G 1 v · =G 1 = · v9G9 1 v] G 1 ] v9G9t p p

5 D 1 D , (17)H V

using (9) and (4), with the definition X [ X 1 X9 for
some quantity X. (During the source month, there is an

additional source term on the rhs.) As suggested by this
form of the equation, we compare the so-called tendency
due to parameterized vertical transport, D V, with the
tendency due to resolved vertical transport, T V [
2( 1 ]pv9G9). Both V → 0 and V → 0 as Gv] G D Tp

→ G`, as must be the case for any reasonable measure
of transport tendency. Since DV vanishes on vertical
integration, we compute as a global measure of the over-
all strength of the two terms the global (horizontal and
vertical) integrals of their absolute values. As a measure
of the relative strengths of the two terms, we form the
ratio R [ ^∫ dp |D V |&/^∫ dp |T V |&. Figure 11 shows R as a
function of lag time for G1 and G7. Although at very
early times, when tracer resides primarily in the bound-
ary layer, parameterized transport must dominate, Fig.
11 shows that even for tendencies averaged over the
source month, R barely exceeds unity and in one case
(G1, EUR) T V already dominates. With increasing lag

V and V decay to zero, but after ;3 months R de-D T
creases only very slowly with R ; ⅓ after 6 months.
Note that at early times R is largest for the summer-
release cases, as might be expected from more vigorous
midlatitude summertime convection. The inset of Fig.
11 shows R for year 5 of the run with constant sources.
In the quasi-stationary state R ; 0.4 with a more pro-
nounced seasonal cycle for the EUR case.

The tendencies V and D V are of course not equallyT
important everywhere. To give an indication of their
spatial distribution, we show in Fig. 12 their zonal av-
erages for the month following the source month, av-
eraged over all 12 Gl,m. The parameterized transport,
D V, is largest close to the surface, where it removes
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tracer from the boundary layer and the resolved trans-
port is relatively weak. The resolved transport tendency
near the surface is dominated by the eddy component
2]pv9G9 (not shown separately). The large implied
downward flux seen for the EUR case at ;358N is as-
sociated with eddy transport in the oceanic storm tracks.
For p * 500 mb, D V does contain some representation
of deep convection, but T V is approximately five times
larger. The simple layer-by-layer convective adjustment
scheme used is necessarily less efficient at transporting
tracer to the upper troposphere than a penetrative cu-
mulus convection scheme.

6. Structure and seasonality of eddy transport

The monthly mean circulation plays an important role
in transport, but eddies are equally important. We will
first discuss the eddy transport for the statistically sta-
tionary state and then examine how these stationary-
state eddies are synthesized from their time-lagged
counterparts of the Green function. The standard eddy
decomposition of a variable X in statistically stationary
state is X 5 [X] 1 X* 1 X9, where X9 [ X 2 X are
the ‘‘transient’’ eddies, and X* [ X 2 [X] are the
‘‘standing’’ eddies. (As before, the overbar is a com-
bined monthly and ensemble average and the brackets,
[ . . . ], denote a zonal average.)

The zonally and monthly/ensemble-averaged tracer
equation (1) reads

]t[x] 1 ]y[yx] 1 ]p[vx] 5 [S] 1 [D], (18)

where ]yX [ (a cos(f ))21 ]f(cosfXf ), and D [ DV 1
DH. The statistically stationary flux [yx] can be parti-
tioned into its mean-motion, standing-eddy, and tran-
sient-eddy components:

[ yx ] 5 [ y ][ x ] 1 [y * x*] 1 [y9x9], (19)

and similarly for [vx]. Whether or not the background
mixing ratio, x0, is subracted from x 5 x1 1 x0 [cf.
Eq. (12)] makes a negligible difference for the eddy
terms since [ 0, and 5 0 to an excellentx* [y9x9 ]0 0

approximation. We will consider the mean-motion term
only vertically integrated, so that again it does not matter
if x0 is removed since 5 0 to an excellent ap-[ ỹ ]
proximation.

The net meridional flux accomplished by each trans-
port term is given by its vertical integral. In the statis-
tically stationary state ] t[x1] and [D H] are small so that,
with ] t[x] 5 [ and ps/^ps& ù 1, the vertical] x St 0

integral of (18) gives the first-order balance

]y[ ] ù [F 2 ^F&].ỹx (20)

Equation (20) shows that [ ] contains little more in-ỹx
formation than what source has been specified. The in-
terest here lies, therefore, in the nature of the partition
of the essentially constrained flux, [ ], into [ ],˜ ˜yx y ][x
[ ], and [ ]. Figure 13 shows space–time˜ ˜y* x* y9x9
plots of these three components, together with [ ], forỹx

year 5 of the simulation with constant sources. The weak
seasonality of [ ] shows the degree to which 1ỹx ] [x ]˜t

can be neglected in (20). The fluxes are largest in the
vicinity of the source, which maintains high gradients.
All three components are of the same order of magni-
tude, and no single mechanism, in this diagnostic sense,
dominates in the NH. The mean-motion and standing-
eddy terms show a strong seasonality consistent with the
seasonal movement of the Hadley cell and the monsoon.
The southward flow between the equator and ;308N, as-
sociated with the lower branch of the Hadley cell during
winter, weakens to the point of weak reversal during sum-
mer. Since the total transport is approximately constrained
to be time independent by (20), the eddy transport takes
over when [ ] slackens. Presumably because of theỹ ][x
large standing structures associated with the monsoon,
the standing eddies take over the bulk of the transport
from the mean motion, while the tropical transient ed-
dies show relatively little seasonality. In the SH, tran-
sient-eddy transport dominates for two reasons. The
mixing ratio is largely zonally symmetric in the SH so
that [y * x*] is small, and the mixing ratio has weaker
vertical gradients in the SH (see Fig. 9) giving a weaker
mean-motion term (if [x ] had no vertical structure,
[ 5 [x ][ ] 5 0). There is considerable difference˜ ˜y ][x ] y
in the seasonality of the eddies between the two source
cases. The standing eddies are weaker for ENA tracer
consistent with the fact that the ENA Green function is
more homogenized by the time it reaches the monsoon
region than is the case for EUR tracer.

We now ask how much Green function Gl,m contrib-
utes to the mean-motion and eddy fluxes of the statis-
tically stationary state. From (10) it follows that the
eddy fluxes of x for month m can be written as a sum
of the corresponding lagged eddy fluxes (or ‘‘eddy con-
tributions’’) of the G9s. Thus, for the transient eddies
we have

`

[y9x9] 5 s [y9G9 ], (21)O m2n
n50

with similar expressions for the standing-eddy and
mean-motion terms and their vertical counterparts. [In
(21) we assumed for definiteness a single source pattern
of constant strength s.] Since G itself is never in sta-
tistically stationary state, the deviations G* cannot be
considered to be truly ‘‘standing’’ eddies. Similarly, [G]
and G9 do not carry quite the same interpretations as in
the statistically stationary case. However, even in the
case of a constant source, x1, and indeed any other
climate variable, is only cyclo-stationary, and as we
have just seen, the standing eddies do change from
month to month. After their source pulse has ceased,
the Gl,m do not change significantly more rapidly than
x1 so that one can, at least to a first approximation,
think of the eddy terms of (21) in much the same way
as one would in the statistically stationary case. It is
certainly legitimate and interesting to examine the terms
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FIG. 9. (a) EUR source. The ensemble, monthly, and zonally averaged Green function and its resolved flux (vectors) for the release times
(subscripts) and months indicated. The contour interval is 1.0, with the lowest contour at 0.5 and the highest contour at 10.5, in units of G`.
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FIG. 9. (Continued ) The vector scale indicates a horizontal flux 10G` m s21. The vertical components of the fluxes have been scaled as
described in the text. (b) Same as (a) but for the ENA source.
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FIG. 10. Equatorial east–west section of the ensemble and monthly averaged Green function, for the month following the source month.
The contour interval is 0.25 in units of G`.

in (21) to establish the time it takes for an individual
pulse to result in eddy fluxes, and the magnitude of this
contribution to the stationary-state fluxes.

Figure 14 shows the vertically integrated mean-mo-
tion and eddy fluxes for GE,1 and GE,7 (EUR source)
as a function of lag time. The corresponding quantities
for ENA (not shown) are virtually identical after ;3
months. As was the case for the stationary state, all
terms are of the same order, with strong differences

in the mean-motion term between a winter and sum-
mer pulse related to the seasonal movement of the
Hadley cell/monsoon. All terms are largest during the
source month and in the vicinity of the source. After
;4 months, SH midlatitude transport is dominated by
the transient eddies, with a smaller counteracting
mean-motion contribution. In the SH midlatitudes
both the transient-eddy and mean-motion terms peak
at a lag of about 3–4 months, which is approximately
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FIG. 11. The ratio, R, of parameterized to resolved vertical transport
strengths, as defined in the text, for G1 (diamonds) and G7 (circles)
for the EUR (dashed lines) and ENA (solid lines) cases. The inset
shows R for the statistically stationary state during year 5 of the run
with constant sources.

the time for G to reach 50% of its asymptotic value
there (see Fig. 6).

The seasonality of the partition of [ ] into its mean-ỹG
motion and eddy components, at fixed lag, j, (not shown)
is very similar to the seasonality of the partition of [ ].ỹx
The Green function is not constrained by (20), but obeys,
after the source pulse has ceased, ]y[ The˜˜ ] ù 2] [ ].GyG t

decay rate, , has surprisingly little seasonality so that˜] [ ]Gt

the transport partition of [ ] at fixed j is very similarỹG
to that of [ ] for constant source. When j is increasedỹx
from one to several months, the amplitude of the sea-
sonal cycle weakens while the overall pattern remains
similar, except for the spreading south and the growing
importance of the transient eddies in the SH.

Figure 15 shows the vertical structure of the eddy
fluxes for the annual mean of the stationary state (EUR
source) together with the monthly/ensemble means of
GE,1 and GE,7 for the fourth month after injection. (The
ENA case is qualitatively similar.) The fluxes, scaled in
the vertical as for Fig. 9, are superposed on contours of
the corresponding time/ensemble and zonally averaged
mixing ratio. The standing eddies have significant am-
plitude only in the NH so that the smallness of their
vertical integral in the SH (Figs. 13, 14) is not due to
vertical cancellation. The standing eddies have strong
seasonality in the Tropics (upward for the winter release,
downward for the summer release). As already noted
for the vertically integrated fluxes, the SH transient ed-
dies of G at a lag of ;3 months make a large contri-
bution to the eddies of the stationary state. Both for the
stationary state and for G, there is a band of relatively
high-amplitude transient eddies in the SH between about
308 and 608S.

Note that in the SH the transient eddies are aligned
to a large degree with the contours of the time- /ensem-

ble-mean, zonally averaged mixing ratio. That this is
not merely an artifact of the plotting is confirmed by
the fact that, where one sees the alignment, the transient
eddies are inefficient in driving fluctuations (see below).
This alignment, and the distribution of the transient ed-
dies throughout the troposphere between ;308 and
608S, first becomes evident at a lag of ;2 months and
persists during the tropospheric homogenization phase
of G (not shown). Eddy fluxes perpendicular to the mean
gradient (‘‘skew fluxes’’) represent effective advection
of the mean mixing ratio in a flux-gradient parameter-
ization of the eddies (Plumb and Mahlman 1987). For
small amplitude fluctuations, skew fluxes can be inter-
preted as arising from Stokes drift (Plumb 1979). The
details of the mechanism responsible for the flux align-
ment seen here remain to be explored.

7. Fluctuations

As the Green function is mixed by the atmosphere
after the source pulse has ceased, ensemble fluctuations
decay and the ensemble members converge to their com-
mon ‘‘climate.’’ Here we focus on the structure and
decay of these fluctuations.

First, we consider the fluctuations around the monthly
and ensemble mean (the ‘‘pooled mean’’), whose pooled
variance is {G92}, where G9 [ G 2 {G}. Because of
the nonstationary nature of G, this variance has a slight
positive bias compared to {G† 2}, which is the monthly
mean variance of the fluctuations, G† [ G 2 {G}, about
the instantaneous ensemble mean. Nevertheless, we find
that during the entire time evolution of G, the difference
between the two variances, {G92} 2 {G† 2} 5

, is negligible, that is, {G 2 G}2/{G92} K2{G 2 G}
1. For compactness of notation we now continue to use
an overbar for the combined monthly and ensemble av-
erage.

Figure 16a shows the vertically integrated and hori-
zontally averaged pooled variance as a function of time
on a log–log plot. After a few months the variance de-
cays approximately with a t23.5 power-law tail. Figure
16b shows the zonal average of the pooled variance to
give an idea of its spatial structure. At early times the
variance is highly concentrated in the region of the
source, while after several months of decay, the vari-
ance, though of drastically reduced amplitude, has de-
veloped structure also in the upper atmosphere. In spite
of its small amplitude, the large-lag variance does still
contribute to the statistically stationary state in regions
remote from the source (see below).

We now ask what role eddies play during the decay
of variance. The averaged equation of motion for the
fluctuations G9 follows straightforwardly from (9) as

2 2 2] G9 1 v · =G9 1 2v9G9 · =G 1 v9 · =G9 1 (v terms)t

5 2G9D9, (22)

where the v terms are of exactly the same form as those
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FIG. 12. Zonally averaged, annual- and ensemble-mean, lag-l-month parameterized vertical transport ‘‘tendency,’’ [D V], and resolved
vertical transport ‘‘tendency,’’ [T V]. All panels are plotted on the same scale with a contour interval of 0.2 in units of 1026 G` s21, straddling
zero symmetrically.

involving v with the substitutions v → v and = → ]p.
In (22), D [ DH 1 DV and the triple correlations
v9 · =G92 (and similarly for v) are assumed to be small.
The source pulse, SG [ D3(r 2 r l)D(t 2 tm), does not
appear on the rhs, because all ensemble members see the
same pulse, which is constant during the averaging pe-
riod of the first month and zero otherwise. The term
v9G9 · =G and its vertical counterpart are eddy con-
version terms that generate fluctuations from the mean
gradient. While SG does not explicitly appear in (22),
during the source month, =SG maintains = in the eddyG
conversion term as can readily be seen by taking gra-
dients of (9).

Zonal averages of the advection and eddy-conversion

terms of (22) are shown in Fig. 17 at a lag of 1 and 6
months. At early times, advection and conversion are
of the same order of magnitude and highly concentrated
in the region where the source pulse occurred. As the
mixing ratio becomes homogenized, conversion domi-
nates over advection (though both terms decay). The
panels for July are typical of the late stages of the var-
iance decay. The eddy conversion term is negative
definite in the zonal average and, therefore, acts as a
source of G92 , which in the upper atmosphere has rough-
ly the same pattern as the conversion term in the pres-
ence of the relatively weak advection. We find that to a
good approximation [v9G9 · =G] 1 [v9G9]pG] ù ([y9G9],
[v9G]) · (a21]f , ]p)[G]. The smallness of this term,
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FIG. 13. Vertically integrated mean-motion, standing-, and transient-eddy transport terms together
with the total transport, , as a function of time for year 5 of the run with (right) constant[yx ]˜
EUR source, or (left) constant ENA source. The contour interval is 0.2, straddling zero symmet-
rically, in units of 5s^G̃`& m s21. Northward transport (dark shades) is positive.

where the transient eddy fluxes are large in the SH (cf.
Fig. 15), confirms that the transient-eddy fluxes there
are approximately aligned with contours of constant [G]
and hence inefficient in driving fluctuations.

The fluctuations, G9, contribute to the fluctuations,
x9, of the statistically stationary state for constant sourc-
es. Given a single source pattern of strength s, the
pooled variance of mixing ratio for month m can be
written from (10) as

`

2 2x9 /s 5 G9 G9 . (23)O m2k m2n
k,n50

A segment of the globally integrated lagged autoco-
variance matrix, , is shown in Table 1. TheG9 G9m2k m2n

diagonal lag-0 and lag-1 matrix elements (k 5 n 5 0,
1) are by far the largest and capture the basic structure
of x92 (not shown). However, to capture the amplitude
and pattern of x92 in the remote upper atmosphere, the
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FIG. 14. Vertically integrated mean-motion, standing- and transient-eddy transport terms of G
as a function of lag time in months, including the source month as month 0, for (right) G1 and
(left) G7. Contours are plotted from 21.5 to 11.5 with an interval of 0.2 in units of 0.2 ^G̃`& m
s21. Northward transport (dark shades) is positive.

off-diagonal matrix elements cannot be neglected in
(23). The lag-6 diagonal term of Fig. 16b shows that,
as expected, remote upper-level variance features come
from large lag.

To take a direct look at ensemble fluctuations without
monthly averaging, we have analyzed them for the
6-hourly time series of the vertically integrated Green
function, G̃, and its flux, . From (9) it follows thatṽG
the instantaneous ensemble variance of G̃ obeys

1
†2 † † † †˜ ˜ ˜ ˜˜] {G } 1 {G = · vG } 5 {G D }. (24)t H2

The source pulse does not appear explicitly in (24) for
the same reasons it did not appear in (22). Because of
the very small size of our ensemble, the terms of (24)
need to be averaged in some way so that as many in-
dependent statistical samples as possible are included
in the average. We find that zonal and global averages

give reasonable results as judged by examining them
for different source months and hence different ensem-
bles of Gs.

Figure 18 shows the global averages of the variance,
its dynamic generation term, , and dissi-† †˜ ˜{G = · vG }
pation term, {G̃† }, for G̃E,1 (EUR) as a function of†D̃ H

time. [The dissipation term is computed from the other
terms via (24).] The aspects about to be considered are
very similar for other source months and the ENA case.
The ensemble variance, {G̃† 2}, is a measure of the de-
gree to which a different realization of the transport
operator results in a different G̃. As seen in Fig. 18a,
^{G̃† 2}& grows rapidly from zero to a quasi-stationary
value after ;10 days when the dissipation and gener-
ation terms come into approximate balance (Fig. 18b).
Variance can be sustained only while the source is ‘‘on’’
maintaining gradients from which fluctuations can be
generated. As soon as the source ceases, ^{G̃† 2}& decays
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FIG. 15. Standing and transient eddy fields (vectors) for the EUR source superposed on contours of the corresponding mean mixing ratio.
For the statistically stationary state the horizontal flux vector scale is in units of sG` m s21. For G1 and G7, ensemble and monthly averages
are shown for the fourth month after release, with a horizontal flux vector scale in units of G` m s21. The vertical components of the fluxes
have been scaled as described in the text.
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FIG. 16. (a) The vertically integrated, horizontally averaged pooled
variance of G1 in units of ^G̃`&2 m2 kg21 as a function of time in
months, with month 1 corresponding to January. The dashed line
indicates a t23 power law. (b) Zonal averages of the pooled variance
of G1 (units as indicated).

sharply as it becomes quickly inefficient to generate
fluctuations from a field that is increasingly smooth due
to dissipation. Log–log plots of the decaying tail of
^{G̃† 2}& reveal an approximate t23 power-law decay,
suggestive of ‘‘turbulent diffusion’’ (see inset of Fig.
18a).

Figure 18b shows that 2^{G̃ † }& resembles very†D̃H

closely ^{G̃† 2}& plus some high-frequency noise. The
linear correlation coefficient of the two curves is rc 5
0.965 and the correlation persists into the tail, with rc

* 0.9 even when the first 60 days are omitted. For the
global integrals, we can, therefore, write the dissipation
term as a linear damping of the variance; that is,

1
† † †2˜ ˜ ˜^{D G }& . 2 ^{G }&. (25)H tD

A least squares fit gives tD ; 10 days (tD 5 11.2, 11.3,
8.86, and 10.6 days, for GE,1, GE,7, GA,1, GA,7, respec-
tively). Since the early time growth of variance is lim-
ited by the dissipation term, it is not surprising that t D

is on the same order as the time to reach saturation. The
;t23 decay of the tail, in spite of the linear damping
(25), implies that the decay of variance under stationary
turbulent advection takes place in a regime where the
dynamical generation and dissipation terms attempt to
balance.

In the context of homogeneous isotropic turbulence,
tracer variance can certainly decay with a power law.
A direct-interaction-approximation closure for the tracer
two-point correlation function predicts that the tracer
variance {x† 2} ; R2d(t), where the tracer integral scale
R(t) may be interpreted as the rms separation of two
Lagrangian particles, and d 5 2 or 3 is the spatial di-
mension (Kraichnan 1966; Lesieur and Herring 1985).
Under conditions of a (kinetic) energy cascade (d 5 3),
or inverse energy cascade (d 5 2), a Richardson law
applies for which R ; t23/2 giving {x† 2} ; t29/2 for d
5 3, or ;t23 for d 5 2. For the enstrophy cascade regime
(d 5 2), the existence of a power law is not clear (e.g.,
Lesieur 1987). Unfortunately, it is not clear that these
predictions apply directly to the atmosphere, where the
kinetic energy does have an inverse cascade, but the
global spectrum does not show a k25/3 range (Boer and
Shepherd 1983), which is needed for the t23 prediction.
A k25/3 range might exist in a regional sense, but at
present we merely note that a t23 decay of variance can
occur in 2D turbulence, and regard the ;t23 decay seen
in the model atmosphere as an empirical result.

To get an idea of the spatial structure of the terms of
(24), we examined 6-h time series of zonal averages and
maps of 30-day time averages (not shown). There is
considerable spatial correlation between the dissipation
and variance terms, particularly during the source month
when northward-propagating structures leave the source
(at phase speeds of ;1000 and ;500 km day21, for
ENA and EUR, respectively). Maps of 30-day averages
indicate that variance and dissipation are collocated with
{G̃}.

8. Summary and conclusions

The central theme of this paper was the study of pas-
sive tracer transport in terms of the climate of the trans-
port Green function. Our goal was not to characterize
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FIG. 17. Zonal averages of the advection and eddy conversion terms for the pooled variance of G1. The contour interval indicated strad-
dles zero symmetrically.

TABLE 1. The ‘‘small-lag corner’’ of the globally integrated lagged autocovariance matrix for m 5 12 (Dec). The matrixG9 G9m2k m2n

elements have been normalized by the zero-lag variance element (k 5 n 5 0).

k
n 0 1 2 3 4 5 6

0 1.0000 20.0798 20.0027 20.0024 20.0015 20.0009 20.0007
1 0.2943 0.0143 0.0090 0.0057 0.0037 0.0027
2 0.0098 0.0053 0.0034 0.0023 0.0017
3 0.0033 0.0022 0.0016 0.0012
4 0.0016 0.0012 0.0009
5 0.0009 0.0007
6 0.0005

the transport of any specific tracer, but to use a generic
passive tracer to probe atmospheric transport. We ex-
ploited the linearity of passive tracer continuity to define
a numerically tractable coarse-grained Green function,
G, for two source locations (EUR and ENA) of interest

for anthropogenic emissions. The part of the coarse-
grained Green function relevant for these sources was
obtained through direct simulation of unit mass injec-
tions for an ensemble of three runs, using CCC GCMII.
The Green function was then systematically character-
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FIG. 18. (a) Six-hourly time series of the globally averaged en-
semble variance ^{G̃ †2}& for G1, EUR, in units of ^G̃`&2. (The source
pulse lasts from t 5 0 to day 31.) The inset shows a log–log plot of
^{G̃†2}& for t $ 30 days, with a straight line indicating a t23 power
law. (b) Corresponding 6-hourly values of the dissipation term,
^{ G̃†}& (solid line), and the dynamical source term,†D̃H

(dashed line), in units of ^G̃`&2 s21. Spikes of† †˜ ˜^{G = · vG }&
that have been cut off for clarity do not exceed 245† †˜ ˜^{G = · vG }&

3 1027 ^G̃`&2 s21.

ized in terms of its ensemble mean, or climate, and the
structure and decay of fluctuations about this mean as
the initial injection of tracer is mixed throughout the
atmosphere. The climate of G is naturally suited to the
identification of transport timescales, pathways, and
mechanisms.

Transport timescales were identified by parameter-
izing the time evolution of G at a point in terms of three
timescales and an overshoot measure. The time, t`(0.1),
to get within 10% of the asymptotic value of G`, exceeds
1 yr at high-latitude lower levels. The other timescales

t 0(g) and tmax can be interpreted as arrival times (the
time when G first reaches gG`, and Gmax, respectively).
The model’s two-box interhemispheric exchange time
is ;0.6 yr for the sources studied. This two-box time
has a direct connection with an integral time, t*, again
based on the time-evolution of G (see apendix). We note
that G here is a different object than the age spectrum
of Hall and Plumb (1994), which is a propagator of
boundary conditions. Tracer age can also be formulated
in terms of G, and the connection between G and the
age spectrum will be the subject of a future study.

Transport pathways and their seasonality were deter-
mined from the time-evolving climate of G. EUR and
ENA tracers follow different pathways during the first
few months, but then converge to a common distribution
as mixing ratio is zonally homogenized. After ;3
months, differences between the EUR and ENA column
burdens and vertically integrated fluxes become negli-
gible. The main distinguishing characteristic between
the two source cases is that EUR tracer is advected over
the Asian continent, where continental conditions con-
fine it to low levels and high latitudes in winter, while
subjecting it to strong convection in summer. ENA trac-
er is advected over the Atlantic and consequently ex-
periences more vertical transport in winter and less of
a seasonal contrast. The zonally averaged evolution of
G is largely consistent with the general picture given
by Plumb and Mahlman (1987) and Plumb and Mc-
Conalogue (1988). A ‘‘slope equilibrium’’ in which con-
tours have reached approximately constant shape, while
gradients continue to get flattened as G → G`, is es-
tablished ;4 months after injection.

We investigated how much of the climate Green func-
tion’s transport is due to eddies, what the structure of
these eddies is, and how the eddy fluxes of the statis-
tically stationary state with constant sources are syn-
thesized from the corresponding eddy terms of G. Mean-
motion, standing-eddy, and transient-eddy fluxes are all
of the same order of magnitude but do not contribute
equally everywhere. Southern Hemisphere transport is
dominated by transient eddies established from tracer
injected ;4 month earlier. The SH transient eddies ex-
tend vertically throughout much of the troposphere and
are aligned to a large degree with contours of the zonally
averaged mixing ratio. Waning tropical mean-motion
southward transport in summer, associated with the sea-
sonal movement of the Hadley cell and the monsoon,
is largely compensated by increased standing-eddy
transport.

The fluctuations of G about its climatic mean were
characterized in terms of their spatial structure and their
decay with time after injection (the fundamental self-
averaging of G). While the source is ‘‘on,’’ fluctuations
of G are driven by mean gradients maintained by the
source. Thereafter, fluctuations decay with a power law
and the (itself decaying) source of pooled variance is
the eddy conversion term. For large lag, eddy conver-
sion dominates over advection. Ensemble fluctuations
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were studied directly for the column burden, G̃. In terms
of global averages, the dissipation term, ^{ G̃†}&, acts†D̃ H

as a linear damping of the ensemble variance, ^{G̃† 2}&
with a timescale of ;10 days. After the source ceases,
^{G̃† 2}& decays with an approximate t23 power law sug-
gestive of turbulent diffusion.

Since G was generated using CCC GCMII, we ad-
dressed the natural question: What is the relative im-
portance of parameterized versus resolved transport.
The resolved (TV) and parameterized (DV) vertical trans-
ports are of the same order of magnitude in terms of a
globally integrated measure, with DV dominating during
the source month and TV dominating thereafter. Close
to the surface DV removes tracer from the boundary
layer where it dominates TV. Although even with a sim-
ple convective adjustment scheme, DV contains some
representation of deep convection (especially for the
EUR case), upper-level vertical transport is dominated
by TV.

Although our results are based on a model atmo-
sphere, we hope that they are at least qualitatively rep-
resentative of the real atmosphere. While validation of
tracer transport is difficult because of a current lack of
tropospheric upper-air measurements of quasi-passive,
long-lived tracers [a situation that is improving (Maiss
1996, personal communication; Ray 1997, personal
communication)], CCC GCMII has been intercompared
with other models and validated against surface obser-
vations of SF6 (Denning et al. 1997). The general trans-
port pathways, the nature of the homogenization of G,
the role of eddy transport, and the way in which en-
semble fluctuations decay should all be robust features
of tropospheric transport not overly sensitive to model
formulation. Details of these features, such as the pre-
cise values of timescales, may well change as GCMs
evolve and become more constrained by tracer obser-
vations.

The climate Green function provides a natural frame-
work for the analysis of transport pathways, mecha-
nisms, and timescales for sources with general time de-
pendence, including constant sources leading to a sta-
tistically quasi-stationary state. Tracers that are subject
to volume distributed source–sink terms not considered
here, but have no feedback on the atmosphere, are also
amenable to a Green function analysis.
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APPENDIX

Integral Time and Connection to Stationary State
The integral time t* is defined such that G(j ) djt∫0

→ (t 2 t*)G` as t → `. More precisely, we define t*
5 wherelim t̂ ,t→`

t

G(j ) dj [ (t 2 t̂)G , (A1)E `

0

so that

t1
t* 5 lim t 2 G(j ) dj . (A2)E1 2Gt→` ` 0

With this definition, if t* # 0, then G overshoots G`.
Where t* k 0, any overshoot is unlikely, G reaches
G` from below, and t* has a natural interpretation as
an effective arrival time akin to t 0(½) (cf. Figs. 5 and
6).

For a time-independent source S(r), the mixing ratio,
x, involves a time integral of G which from (27) can
be written in terms of t*:

t

3x(r, t) 5 d r9S(r9) dj G(r, t | r9, t 2 j )E E
0

3 35 tG d r9S(r9) 2 G d r9S(r9)t*(r, r9),` E ` E
(A3)

where we assume t is large enough to replace witht̂
t*. The first term of (A3) is recognized as the linearly
increasing spatially homogeneous background mixing
ratio, x0, so that x1 [ x 2 x0 given by

1 3x (r, t) 5 2G d r9t*(r, r9)S(r9). (A4)` E
In the case of a point source in the NH, S(r) 5 S0d(r
2 r0); we therefore have

1x
t* 5 2 , (A5)

G S` 0

so that t* reduces simply to the scaled deviation of
mixing ratio from the background. To compute t 2B, we
need to compute DM, which we can write in terms of
x1 as

3 1 3 1DM 5 d r9x 2 d r9xE E
NH SH

3 15 22 d r9x , (A6)E
SH

so that t 2B becomes

4G` 3 3t 5 d r9 d r0t*(r9, r0)S(r0), (A7)2B E EDS SH

where DS [ ∫NH d3r9S 2 ∫SH d3r9S. This expression again
becomes very simple for the case of a point source in
the NH:

^t̃*& ^t̃*& 2 ^t̃*&SH SH NHt 5 2 5 , (A8)2B ^p &/g ^p &/gs s
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where ^ . . . &NH and ^ . . . &SH denote hemispheric area
averages over the NH and SH.

We have suppressed the dependence of G (and, there-
fore, of t*) on source time, t9, here to keep the equations
as simple as possible. The dependence of G(t9, j ) on t9
can be dealt with, for example, via Fourier transform
on t9. In this sense, the above discussion is valid for the
annual mean of G over t9 (at fixed lag, j ).
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